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1 Discrete Models

c)

The following graph is showing the evidence for each model

d)

1)

Table over the 11 different possibilities under each model
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.

Bethany-model Charlotte-model Davina-model
0 0.00000000e+00 0.00000000e+00
0 0.00000000e+00 7.78633801e-09
0 5.66695902e-05 2.79676219e-05
0 0.00000000e+00 2.13746139e-03
0 6.19681968e-02 3.05825945e-02
1 0.00000000e+00 1.55251489e-01
0 7.05856492e-01 3.48354866e-01
0 0.00000000e+00 3.44952256e-01
0 2.32118641e-01 1.14555379e-01
0 0.00000000e+00 4.13797926e-03
0 0.00000000e+00 0.00000000e+00

2)

Predictive distribution

Bethany-model Charlotte-model Davina-model
0.5 0.63400742105992502 0.63635359808933689

e)

1)

According to the question c) we can say that all of the three girls are right
because the graph is in accord with what they have said at the beginning.

2)

What happen If Andrew had drawn 130 white balls out of 200?
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As we can see on the graph, when nTotal is very big the Charlotte’s model
and the Bethany’s model tends to be the same.

2 Continuous Models

a)

Derive Freds maximum likelihood solution for the parameters of his model.
The parameters for the Fred’s model is θ = (µ, σ2).
Likelihood: Probability of the observed data x given the parameters θ

The Likelihood is given by :

p(x|θ) = p(x1, x2, ....., xN θ) =
N∏
n=1

p(xn|θ)

Our goal is to Find the parameters that maximize the likelihood p(x|θ).
The step of finding the maximum are :

• Compute gradient with respect to
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• Set gradient to 0

• Solve for

So we have :

p(x|θ) =
N∏
n=1

p(xn|θ) =
N∏
n=1

N (xn|µ, σ2)

But instead of maximizing the Likelihood, we will maximize the log-
Likelihood because log is a strictly monotonically function increasing func-
tion.

Why are we allow to this transformation? because

• We will obtain The same maximum

• Gradients easy

• Fewer numerical problems

Thus, the Log Likelihood is given by :

log p(x|θ) = log
N∏
n=1

p(xn|θ)

=
N∑
n=1

log

(
1√

2πσ2
exp
(
− 1

2σ2

(
xn − µ

)2))

= −N
2
log
(
2πσ2

)
+

N∑
n=1

(
− 1

2σ2

(
xn − µ

)2
)

The gradient of the Log Likelihood with respect to µ is given by :

∂

∂µ
log p(x|θ) =

∂

∂µ

(
−N

2
log
(
2πσ2

)
+

N∑
n=1

(
− 1

2σ2

(
xn − µ

)2
))

=
N∑
n=1

∂

∂µ

(
− 1

2σ2

(
xn − µ

)2
)

=
N∑
n=1

(
1

σ2

(
xn − µ

))
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Setting the gradient that we compute before to zero, we obtain:

N∑
n=1

(
1

σ2

(
xn − µ

))
= 0 =⇒

N∑
n=1

xn −Nµ = 0

So we obtain :

µML =
1

N

N∑
n=1

xn (1)

Let pose α = σ2.
The gradient of the Log Likelihood with respect to σ2 is given by :

∂

∂α
log p(x|θ) =

∂

∂α

(
−N

2
log
(
2πα

)
+

N∑
n=1

(
− 1

2α

(
xn − µ

)2
))

=
∂

∂α

(
−N

2
log
(
2πα

))
+

∂

∂α

(
N∑
n=1

(
− 1

2α

(
xn − µ

)2
))

= −N
2α

+
N∑
n=1

1

2α2

(
xn − µ

)2

Setting the gradient that we compute before to zero, we obtain:

−N
2α

+
N∑
n=1

1

2α2

(
xn − µ

)2
= 0 =⇒ −Nα +

N∑
n=1

(
xn − µ

)2
= 0

Replacing α by σ2

−Nσ2 +
N∑
n=1

(
xn − µ

)2
= 0

So we obtain :

σ2
ML =

1

N

N∑
n=1

(
xn − µ

)2
(2)
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b)

Using only the properties of expectation and variance of linear combinations
of iid random variables, show that the maximum likehood estimator σ2

ML is
biased. (that is, taking the expectation of the maximum likelihood estimator
with respect N (µ, σ2) does not return σ2 ).

From the previous question, we already have the value of σ2
ML

σ2
ML =

1

N

N∑
n=1

(
xn − µ

)2

=
1

N

N∑
n=1

(
xn − µML

)2

=
1

N

N∑
n=1

x2
n −

2

N

N∑
n=1

xnµML + µ2
ML

=
1

N

N∑
n=1

x2
n − 2µML

(
1

N

N∑
n=1

xn

)
+ µ2

ML

=
1

N

N∑
n=1

x2
n − 2µ2

ML + µ2
ML

=
1

N

N∑
n=1

x2
n − µ2

ML
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Now we can compute the expectation σ2
ML:

E(σ2
ML) = E

(
1

N

N∑
n=1

x2
n − µ2

ML

)

= E

(
1

N

N∑
n=1

x2
n

)
− E(µ2

ML)

=
1

N

N∑
n=1

E(x2
n)− E(µ2

ML)

iid
= E(x2

N)− E(µ2
ML)

According to the alternative definition of variance, σx = E(x2) − E(x)2

and similarly, σµML
= E(x2

µML
) − E(xµML

)2 where the random variable is
µML. We can notice that E(x) = E(xµML

) = µ. Plug the 2 equations to the
derivation:

E(σ2
ML) = (σ2

x + µ2)− (σ2
µML

+ µ2)

= σ2
x − σ2

µML

We have :

σ2
µML

= V ar(
1

N

N∑
n=1

xn)

=
1

N2
V ar(

N∑
n=1

xn)

iid
=

1

N2

N∑
n=1

V ar(xn)

=
1

N2

N∑
n=1

σ2
x

=
1

N
σ2
x
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Plug back to the E(σ2
ML) derivation,

So we have :

E(σ2
ML) = σ2

x − σ2
µML

= σ2
x −

1

N
σ2
x

=
N − 1

N
σ2
x

So we get :

E(σ2
ML) 6= σ2

ML (3)

Then we conclude that the estimator σ2
ML is biased.

c)

Derive the MAP solution for in Georges model. Do your analysis replacing
10 with µ0 and 25 with σ2

0 (this makes it easier to read). Write your answer
in terms of Freds maximum likelihood solution µML.

The Posterior is given by :

p(θ|x) =
p(x|θ)p(θ)
p(x)

Where x = (x1, x2, ...., xn) , x ∼ N (µ, σ2) and µ ∼ N (µ0, σ
2
o)

Our goal is to Find the parameters that maximize the log-Posterior p(θ|x).
The step of finding the maximum are :

• Compute gradient with respect to

• Set gradient to 0

• Solve for
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Thus, the Log Posterior is given by :

log p(θ|x) = log p(x|θ) + log p(θ) + cste

= −N
2
log
(
2πσ2

)
−

N∑
n=1

(
1

2σ2

(
xn − µ

)2
)

+ logN (µ0, σ
2
0)

= −N
2
log
(
2πσ2

)
−

N∑
n=1

(
1

2σ2

(
xn − µ

)2
)
− 1

2
log
(
2πσ2

0

)
−
(

1

2σ2
0

(
µ− µ0

)2
)

The gradient of the Log Posterior with respect to µ is given by :

∂

∂µ
log p(θ|x) =

∂

∂µ

(
−N

2
log
(
2πσ2

)
−

N∑
n=1

(
1

2σ2

(
xn − µ

)2
)
− 1

2
log
(
2πσ2

0

)
−
(

1

2σ2
0

(
µ− µ0

)2
))

=
N∑
n=1

(
1

σ2

(
xn − µ

))
− 1

σ2
0

(
µ− µ0

)

Setting this gradient that we compute before to zero, we obtain:

∂

∂µ
log p(θ|x) = 0 =⇒

N∑
n=1

(
1

σ2

(
xn − µ

))
− 1

σ2
0

(
µ− µ0

)
= 0

=⇒
N∑
n=1

1

σ2
xn −

N

σ2
µ− 1

σ2
0

µ+
1

σ2
0

µ0 = 0

=⇒ N

σ2
µML −

N

σ2
µ− 1

σ2
0

µ+
1

σ2
0

µ0 = 0

=⇒ µ

(
N

σ2
+

1

σ2
0

)
=
N

σ2
µML +

1

σ2
0

µ0

So we obtain :

µMAP =
1(

N
σ2 + 1

σ2
0

) (N
σ2
µML +

1

σ2
0

µ0

)
(4)
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d)

Explaining your reasoning, calculate the posterior for Georges model. Show
that the MAP point you calculated in the previous exercise is also the mean,
and give a reason why this is true in this example but not true in general.
Again use µ0 and σ2

0 rather than use the actual numbers.
The Posterior is given by :

p(θ|x) =
p(x|θ)p(θ)
p(x)

Where x = (x1, x2, ...., xn) , x ∼ N (θ, σ2) and θ ∼ N (µ0, σ
2
0).

Given the formula for the posterior we can say that :

p(θ|x) ∝ p(x|θ)p(θ)

We get :
p(x|θ)p(θ) = e−

1
2
M

Where :

M =
N∑
n=1

1

σ2
(xn − θ)2 +

1

σ2
0

(θ − µ0)2

=
1

σ2

N∑
n=1

x2
n +

N

σ2
θ2 − 2θ

σ2

N∑
n=1

xn +
θ2

σ2
0

+
µ2

0

σ2
0

− 2θµ0

σ2
0

=

(
N

σ2
+

1

σ2
0

)
︸ ︷︷ ︸

a

θ2 − 2

(
1

σ2

N∑
n=1

xn +
µ0

σ2
0

)
︸ ︷︷ ︸

b

θ +

(
1

σ2

N∑
n=1

x2
n +

µ2
0

σ2
0

)
︸ ︷︷ ︸

c

So :

M = aθ2 − 2bθ + c

= a

(
θ2 − 2b

a
+
c

a

)
= a

[(
θ − b

a

)2

− b2

a2
+
c

a

]

= a

(
θ − b

a

)2

− b2

a
+ c
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Then :

p(x|θ)p(θ) = exp

[
−1

2

(
a(θ − b

a
)2 − b2

a
+ c

)]
= Cste× exp

(
−1

2
a(θ − b

a
)2

)
We can conclude that p(θ|x) ∼ N ( b

a
, 1
a
), where :

a =

(
N

σ2
+

1

σ2
0

)

b =

(
1

σ2

N∑
n=1

xn +
µ0

σ2
0

)

c =

(
1

σ2

N∑
n=1

x2
n +

µ2
0

σ2
0

)

1)

We can see that the mean of the posterior is given by :

b

a
=

1(
N
σ2 + 1

σ2
0

) ( 1

σ2

N∑
n=1

xn +
µ0

σ2
0

)

=
1(

N
σ2 + 1

σ2
0

) (N
σ2
µML +

µ0

σ2
0

)
= µMAP

So finally we end-up with :

b

a
= µMAP (5)

2)

Reason why this is true in this example but not true in general
The MAP point that we calculated previously is also the mean because the
distribution used is symmetric But in general if the distribution is not sym-
metric we will not have the equality.
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e)

Derive the MAP estimate for Harrys model. Use a and b for the shape and
scale 2 respectively instead of the numbers. Write the your answer for σ2

MAP

in terms of Freds maximum likelihood result σ2
ML . NB you might find it

easier to work with (and differentiate with respect to) σ2 rather than σ

The Posterior is given by :

p(θ|x) =
p(x|θ)p(θ)
p(x)

Where x = (x1, x2, ...., xn) , x ∼ N (µ, θ) and θ ∼ IG(a, b), where IG
stand for the inverse Gamma distribution.

Given the formula for the posterior we can say that :

p(θ|x) ∝ p(x|θ)p(θ)

The Log Prior is given by :

log p(θ) = log

(
ba

Γ(a)

(1

θ

)a+1
exp(− b

θ
)

)
= cste− (a+ 1)log θ − b

θ

Thus, the Log Posterior is given by :

log p(θ|x) = log p(x|θ) + log p(θ) + cste

= −N
2
log
(
2πθ)−

N∑
n=1

1

2θ

(
xn − µ

)2
+ log IG(a, b)

= −N
2
log
(
2πθ
)
−

N∑
n=1

1

2θ

(
xn − µ

)2 − (a+ 1)log θ − b

θ
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The gradient of the Log Posterior with respect to θ is given by :

∂

∂θ
log p(θ|x) =

∂

∂θ

(
−N

2
log
(
2πθ
)
−

N∑
n=1

(
1

2θ

(
xn − µ

)2
)
− (a+ 1)log θ − b

θ

)

= −N
2θ

+
N∑
n=1

1

2θ2

(
xn − µ

)2 − (a+ 1)

θ
+

b

θ2

Setting the previous gradient to zero, we get:

−N
2θ

+
N∑
n=1

1

2θ2

(
xn − µ

)2 − (a+ 1)

θ
+

b

θ2
= 0

=⇒ θ2

N

(
−N

2θ
+

N∑
n=1

1

2θ2

(
xn − µ

)2 − (a+ 1)

θ
+

b

θ2

)
= 0

=⇒ −θ
2

+
1

2N

N∑
n=1

(
xn − µ

)2 − θ(a+ 1)

N
+

b

N
= 0

=⇒ θ

(
−1

2
− (a+ 1)

N

)
+

1

2N

N∑
n=1

(
xn − µ

)2
+

b

N
= 0

=⇒ θ

(
1

2
+

(a+ 1)

N

)
=

1

2N

N∑
n=1

(
xn − µ

)2
+

b

N

=⇒ θ

(
1

2
+

(a+ 1)

N

)
=

1

2
σ2
ML +

b

N

Then we have :

θMAP =
1(

1
2

+ (a+1)
N

) (1

2
σ2
ML +

b

N

)
(6)
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f)

Derive Harry’s posterior distribution. You may reuse some of your working
from your previous answer. State also the posterior mean and explain why it
is not equal to the MAP estimate you found in the previous part. You may
use standard results for the mean of the Inverse Gamma distribution.

The Posterior is given by :

p(θ|x) =
p(x|θ)p(θ)
p(x)

Where x = (x1, x2, ...., xn) , x ∼ N (µ, θ) and θ ∼ IG(a, b), where IG
stand for the inverse Gamma distribution.

Given the formula for the posterior we can say that :

p(θ|x) ∝ p(x|θ)p(θ)

So :

p(θ|x) =

(
θ−

N
2 exp

(
−

N∑
n=1

(
xn − µ

)2

2θ

))( ba

Γ(a)

(1

θ

)a+1
exp(− b

θ
)

)

= Cste× θ−
(
a+N

2
+1
)
exp

(
−
(

1
2

∑N
n=1(xn − µ)2 + b

)
θ

)

We can conclude that :

p(θ|x) ∼ IG

(
a+

N

2
, b+

1

2

N∑
n=1

(xn − µ)2

)
(7)

Recall : Let a random variable X ∼ IG(a, b), then it probability density

function is fX(x) = ba

Γ(a)

(
1
x

)a+1
exp(− b

x
) where Γ(α) =

∫ +∞
0

tα−1e−αdt.
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The mean is given by the expectation of X.

E(X) =

∫ +∞

−∞
xfX(x)dx

=

∫ +∞

0

ba

Γ(a)

(1

x

)a
exp(− b

x
)dx

=
ba

Γ(a)

∫ +∞

0

(1

x

)a
exp(− b

x
)dx

=
ba

Γ(a)

[ 1

1− a
e−

b
xx1−a

]+∞

0︸ ︷︷ ︸
0

−
∫ +∞

0

b

1− a
x−a−1e−

b
xdx



= − ba+1

(1− a)Γ(a)

(∫ +∞

0

x−a−1e−
b
xdx

)
Let us pose X = b

x
=⇒ x = b

X
=⇒ dx = − b

X2dX.
Plug this to the previous integral, we have :

E(X) = − ba+1

(1− a)Γ(a)

(
−
∫ +∞

0

b−a−1

X−a−1
e−X

(
− b

X2

)
dX

)

= − b

(1− a)Γ(a)

∫ +∞

0

Xa−1e−XdX

=
b

(a− 1)Γ(a)
Γ(a)

We have show that :

E(X) =
b

a− 1
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By the previous result we can now compute the mean of the posterior

following an inverse Gamma distribution IG
(
a+ n

2
, b+ 1

2

∑N
n=1(xn − µ)2

)

posterior mean =
b+ 1

2

∑N
n=1(xn − µ)2

a+ N
2
− 1

=
1(

1
2

+ (a−1)
N

) (1

2
σ2
ML +

b

N

)

We can notice that the mean of the posterior is not equal to the mean
obtain by the MAP method.

1)

Justifications for the reasons why the posterior mean is not equal to the MAP
estimate that we found in the previous part.
The MAP point that we calculated previously is not the mean because the
distribution used is not symmetric.

g)

Explain what would happen to the result of inference in the three models if
Elizabeth was to take a very large sample from the random number generator.

For the three model when N → +∞,

µMAP → µML

σ2
MAP → σ2

ML
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