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Gaussian Processes

The intention of this coursework is for you to get a better understanding of Gaussian
processes by implementing Gaussian process regression.

Provided to you are gp_assignment.py, a skeleton file in which you will provide
solutions, and yacht_hydrodynamics.data, a file containing a dataset on yacht hy-
drodynamics we will be using to test your solutions. More information about the
dataset can be found here: https://archive.ics.uci.edu/ml/datasets/Yacht+
Hydrodynamics. You are given the function loadData which returns the yacht hy-
drodynamics dataset partitioned into a training set, Dy.in, = {X,y}, and a test set,
Diest = {wa*}-

If at any point you are experiencing trouble with numerical stability, the mathemati-
cal appendix in the book by Rasmussen & Williams may give some helpful pointers:
http://www.gaussianprocess.org/gpml/.

Generally, we consider the regression setting

v=f(x)+e, e~./\/'(0,(7,f).

We will place a GP prior on f with mean function m = 0 and a covariance function
k.

Submission

Submit your solutions via email to mdeisenroth@aimsammi .org by

23:59, October 30

Task 1: 10 marks

Complete the definition of the function multivariateGaussianSample. This func-
tion takes a mean vector, y, and covariance matrix, ¥, and returns a sample drawn
from N (p,X). This will be useful if you want to visualize draws from a GP prior or
posterior.

Task 2: 20 marks

Complete the definition of the function covMatrix. In this part, we are only consider-
ing a single kernel/covariance function: the squared exponential (Gaussian/radial-
basis-function) kernel plus a White-Noise kernel to account for the Gaussian likeli-
hood (noise model):

1 1 ifp=gq
_ 2 2\, 2 _
k(xp,xq) = 0f eXp(_2_€2”xp Xl )+ % 9pg %q = {0 otherwise M

We included the contribution of the Gaussian likelihood in the kernel definition
(Uﬁépq) as this will simplify the implementation of the model.
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For reasons explained in Task 5, we will not be considering the parameters af,& o2
directly. Instead we will be considering the log-parameters Inoy,In¢,In o, given by
the identities in (3). This is why the class RadialBasisFunction is initialized using
the log-parameters, but computes the value of the parameters via the identities as
well.

The function covMatrix should return the kernel matrix K, where K = K(A, A) is the
kernel matrix computed for a set of points, A, using equation (1).

Task 3: 25 marks

Complete the definition of the function predict, which takes a set of test points X,
and computes the posterior mean, f,, and covariance, cov(f,), of the GP regression
for X,.

Task 4: 5 marks

Complete the definition of the function logMarginalLikelihood, which computes the
negative log marginal likelihood of the training set. Note: our optimizer, provided for
you in the function optimize, minimizes the target function, so please return the
negative log marginal likelihood:

1 _ 1 n
~logp(ylX) = 5y 'K ly + > loglK| +~ log 2 (2)

Task 5: 25 marks

Complete the definition of the function gradLogMarginalLikelihood, which com-
putes the gradients of the negative log marginal likelihood you found in Task 4. The
function optimize will minimize the negative log-marginal likelihood on the training
set using these gradients via the BFGS algorithm.

Note: we could optimize the parameters of the GP using the constraints a}?,& a2>0,
but a simpler method would be to solve the unconstrained optimization problem for
the log parameters using the identities:
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Optimization is then accomplished by replacing each instance of ¢2,¢,0?2 in equa-

tion (2) with the corresponding identity in (3) and differentiating the rewritten neg-
ative log-marginal likelihood with respect to the log parameters, Inoy,In¢,Ino,,.
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Task 6: 5 marks

Using optimize and initial parameter values {af =1.0,£ = 0.1,02 = 0.5}, (so, initial
log parameter values are {logo, = 0.5log(1.0),log¢ = log(0.1),log o, = 0.510g(0.5)})
find the optimal parameters for the GP regression.

Task 7: 10 marks

Complete the definitions of the test statistics functions mse and msll and compute
the MSE and MSLL for the test set using your trained GP regression.

The function mse computes the mean squared error on the test set {X,,y,} using the
observed values y, and the predictions, f,, for the test input values, X,.

LN (0 760,
MSE = Zl(y ~ f(x )) 4
1=
The function msll computes the mean standardized log loss on the test set {X,,y.}
using the observed values y, and the predictions, f,, for the test input values, X,,

and cov(y,), the covariance of the predictive distribution of the noisy test data.
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MSLL = - Z{—logp(yi”@traiw x,(f)) == Z{E 10g(2n02(x(:))) + . (5)

o2(x") is the predictive variance given by o2(x\") = V( ﬁ(i)) +o02. V( ﬁ(i)) denotes the

predictive variance of the function value for test case i.




