

COURSEWORK

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES QUANTUM LEAP AFRICA

Foundations of Machine Learning

Gaussian Processes

The intention of this coursework is for you to get a better understanding of Gaussian processes by implementing Gaussian process regression.

Provided to you are $gp_assignment.py$, a skeleton file in which you will provide solutions, and $yacht_hydrodynamics.data$, a file containing a dataset on yacht hydrodynamics we will be using to test your solutions. More information about the dataset can be found here: https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics. You are given the function loadData which returns the yacht hydrodynamics dataset partitioned into a training set, $\mathcal{D}_{train} = \{X, y\}$, and a test set, $\mathcal{D}_{test} = \{X_*, y_*\}$.

If at any point you are experiencing trouble with numerical stability, the mathematical appendix in the book by Rasmussen & Williams may give some helpful pointers: http://www.gaussianprocess.org/gpml/.

Generally, we consider the regression setting

$$y = f(x) + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.

We will place a GP prior on f with mean function $m \equiv 0$ and a covariance function k.

Submission

Submit your solutions via email to mdeisenroth@aimsammi.org by

Task 1: 10 marks

Complete the definition of the function **multivariateGaussianSample**. This function takes a mean vector, μ , and covariance matrix, Σ , and returns a sample drawn from $\mathcal{N}(\mu, \Sigma)$. This will be useful if you want to visualize draws from a GP prior or posterior.

Task 2: 20 marks

Complete the definition of the function **covMatrix**. In this part, we are only considering a single kernel/covariance function: the squared exponential (Gaussian/radial-basis-function) kernel plus a White-Noise kernel to account for the Gaussian likelihood (noise model):

$$k(\mathbf{x}_{p}, \mathbf{x}_{q}) = \sigma_{f}^{2} \exp\left(-\frac{1}{2\ell^{2}} ||\mathbf{x}_{p} - \mathbf{x}_{q}||^{2}\right) + \sigma_{n}^{2} \delta_{pq} \qquad \delta_{pq} = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{otherwise} \end{cases}$$
(1)

We included the contribution of the Gaussian likelihood in the kernel definition $(\sigma_n^2 \delta_{pq})$ as this will simplify the implementation of the model.

For reasons explained in Task 5, we will not be considering the parameters σ_f^2 , ℓ , σ_n^2 directly. **Instead** we will be considering the log-parameters $\ln \sigma_f$, $\ln \ell$, $\ln \sigma_n$ given by the identities in (3). This is why the class **RadialBasisFunction** is initialized using the log-parameters, but computes the value of the parameters via the identities as well.

The function **covMatrix** should return the kernel matrix K, where K = K(A, A) is the kernel matrix computed for a set of points, A, using equation (1).

Task 3: 25 marks

Complete the definition of the function **predict**, which takes a set of test points X_* and computes the posterior mean, $\bar{\mathbf{f}}_*$, and covariance, $\text{cov}(\mathbf{f}_*)$, of the GP regression for X_* .

Task 4: 5 marks

Complete the definition of the function **logMarginalLikelihood**, which computes the *negative log marginal likelihood* of the training set. Note: our optimizer, provided for you in the function **optimize**, minimizes the target function, so **please return the negative log marginal likelihood**:

$$-\log p(\mathbf{y}|X) = \frac{1}{2}\mathbf{y}^{\top}K^{-1}\mathbf{y} + \frac{1}{2}\log|K| + \frac{n}{2}\log 2\pi$$
 (2)

Task 5: 25 marks

Complete the definition of the function **gradLogMarginalLikelihood**, which computes the gradients of the negative log marginal likelihood you found in Task 4. The function **optimize** will minimize the negative log-marginal likelihood on the training set using these gradients via the BFGS algorithm.

Note: we could optimize the parameters of the GP using the constraints σ_f^2 , ℓ , $\sigma_n^2 > 0$, but a simpler method would be to solve the unconstrained optimization problem for the log parameters using the identities:

$$\sigma_f^2 = e^{2\ln \sigma_f}$$

$$\ell = e^{\ln \ell}$$

$$\sigma_n^2 = e^{2\ln \sigma_n}$$
(3)

Optimization is then accomplished by replacing each instance of σ_f^2 , ℓ , σ_n^2 in equation (2) with the corresponding identity in (3) and differentiating the rewritten negative log-marginal likelihood with respect to the log parameters, $\ln \sigma_f$, $\ln \ell$, $\ln \sigma_n$.

Task 6: 5 marks

Using **optimize** and initial parameter values $\{\sigma_f^2 = 1.0, \ell = 0.1, \sigma_n^2 = 0.5\}$, (so, initial log parameter values are $\{\log \sigma_f = 0.5 \log(1.0), \log \ell = \log(0.1), \log \sigma_n = 0.5 \log(0.5)\}$) find the optimal parameters for the GP regression.

Task 7: 10 marks

Complete the definitions of the test statistics functions **mse** and **msll** and compute the MSE and MSLL for the test set using your trained GP regression.

The function **mse** computes the *mean squared error* on the test set $\{X_*, \mathbf{y}_*\}$ using the observed values \mathbf{y}_* and the predictions, $\bar{\mathbf{f}}_*$, for the test input values, X_* .

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_*^{(i)} - \bar{f}(\mathbf{x}_*^{(i)}) \right)^2$$
 (4)

The function **msll** computes the *mean standardized log loss* on the test set $\{X_*, \mathbf{y}_*\}$ using the observed values \mathbf{y}_* and the predictions, $\bar{\mathbf{f}}_*$, for the test input values, X_* , and $\text{cov}(\mathbf{y}_*)$, the covariance of the predictive distribution of the noisy test data.

$$MSLL = \frac{1}{n} \sum_{i=1}^{n} -\log p(y_{*}^{(i)} | \mathcal{D}_{train}, \mathbf{x}_{*}^{(i)}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^{2}(\mathbf{x}_{*}^{(i)})) + \frac{\left(y_{*}^{(i)} - \bar{f}(\mathbf{x}_{*}^{(i)})\right)^{2}}{2\sigma^{2}(\mathbf{x}_{*}^{(i)})}$$
(5)

 $\sigma^2(\mathbf{x}_*^{(i)})$ is the predictive variance given by $\sigma^2(\mathbf{x}_*^{(i)}) = \mathbb{V}(f_*^{(i)}) + \sigma_n^2$. $\mathbb{V}(f_*^{(i)})$ denotes the predictive variance of the function value for test case i.