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1 Linear Regression

a)

1)

Let us find the maximum likelihood solution for the parameters σ2 and w in
terms of Φ.
In this question we consider a factorizing likelihood :

p(y|x) =
N∏
i=1

p(yi|xi)

and Gaussian linear model :

yi ∼ N (wTφ(xi), σ
2)

Our goal is to Find the parameters that maximize the likelihood p(x|θ).
The step of finding the maximum are :

• Compute gradient with respect to

• Set gradient to 0

• Solve for

So we have :

p(y|x) =
N∏
i=1

p(yi|xi) =
N∏
i=1

N (wTφ(xi), σ
2)

But instead of maximizing the Likelihood, we will maximize the log-
Likelihood because log is a strictly monotonically function increasing func-
tion.

Why are we allow to this transformation? because

• We will obtain The same maximum

• Gradients easy

• Fewer numerical problems
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Thus, the Log Likelihood is given by :

log p(y|x) = log

N∏
i=1

p(yi|x)

=
N∑
i=1

log

(
1√

2πσ2
exp
(
− 1

2σ2

(
yi − wTφ(xi)

)2))

= −N
2
log
(
2πσ2

)
+

N∑
n=1

(
− 1

2σ2

(
yi − wTφ(xi)

)2)

The gradient of the Log Likelihood with respect to α = σ2 is given by :

∂

∂α
log p(y|x) =

∂

∂α

(
−N

2
log
(
2πα

)
+

N∑
n=1

(
− 1

2α

(
yi − wTφ(xi)

)2))

= −N
2α

+
1

2α

N∑
i=1

(
yi − wTφ(xi)

)

Setting the gradient that we compute before to zero, we obtain:

−N
2α

+
1

2α2

N∑
i=1

(
yi − wTφ(xi)

)
= 0 =⇒ −Nα +

N∑
i=1

(
yi − wTφ(xi)

)
= 0

So we obtain :

σ2
ML =

1

N

N∑
i=1

(
yi − wTφ(xi)

)
(1)

3



The gradient of the Log Likelihood with respect to w is given by :

∂

∂w
log p(y|x) =

∂

∂w

(
−N

2
log
(
2πσ2

)
+

N∑
n=1

(
− 1

2σ2

(
yi − wTφ(xi)

)2))

= − 1

2σ2

∂

∂w

(
N∑
n=1

(
yi − wTφ(xi)

)2)
= − 1

2σ2

∂

∂w
‖ y − φ(x)w︸ ︷︷ ︸

e

‖2

= − 1

2σ2

∂

∂w
‖e(w)‖2︸ ︷︷ ︸

L(e)

By using the Chain-rule, with L(e) = ‖e(w)‖2 and e(w) = y− φ(x)w, we
obtain :

∂

∂w
log p(y|x) = − 1

2σ2

∂

∂w
L(e)

= − 1

2σ2

∂

∂e
L(e)

∂

∂w
e

= − 1

2σ2

(
2eT
)

(−φ(x))

=
1

σ2
(y − φ(x)w)T φ(x)

Setting the gradient that we compute before to zero, we obtain:

1

σ2
(y − φ(x)w)T φ(x) = 0 =⇒ yTφ(x)− wTφ(x)Tφ(x) = 0

=⇒ wTφ(x)Tφ(x) = yTφ(x)
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=⇒ wT = yTφ(x)
(
φ(x)Tφ(x)

)−1

=⇒ w =
(
φ(x)Tφ(x)

)−1
φ(x)Ty

So we obtain :

wML =
(
φ(x)Tφ(x)

)−1
φ(x)Ty (2)

2)

Let us have a look at on the data set

Plot the predictive mean at test points in the interval [0.3, 1.3] in the case
of polynomial basis functions of order 0, 1, 2, 3 and also order 11. Plot all
the curves on the same axes, showing also the data.
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b)

Repeat the previous part but this time with trigonometric basis functions of
orders 1 and 11. Use test points in [−1, 1.2] to see the periodicity. Note that
your basis functions should be of size 2J + 1 for order J (i.e. dont forget the
bias term).
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c)

In this part we will investigate over-fitting with leave-one-out cross validation.
We should use trigonometric basis functions of order 0 to 10 inclusive and for
each choice use leave-one-out cross validation to estimate the average squared
test error. Plot this average error on a graph against order of basis together.
On the same graph plot also the maximum likelihood value for σ2.
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d)

Briefly describe the concept of over-fitting, using your graph in the previous
part as an illustrative example. You should also refer to your plots from the
first two parts of this question.

According to the previous graph we can say that :

• Training error decreases with higher flexibility of the model due the
degree of the polynomial.

• Average squared test error increases with higher flexibility of the model
due the degree of the polynomial.

• Overfitting refers to a model that models the training data too well.

• Maximum likelihood often runs into overfitting problems
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• It is happens when a model learns the detail and noise in the training
data to the extent that it negatively impacts the performance of the
model on new data.

• We are not so much interested in the training error, but in the general-
ization error: Generalization refers to how well the concepts learned by
a machine learning model apply to specific examples not seen by the
model when it was learning.

• Overfitting is more likely with nonparametric and nonlinear models
that have more flexibility when learning a target function

2 Ridge Regression

a)

A non-probabilistic approach to linear regression is to set yi = wTφ(xi) and
then find the best w by minimizing some loss function. Show that linear
regression with the regularized least squares loss function

L(w) =
N∑
i=1

(
yi − wTφ(xi)

)2
+ λ

M∑
i=1

w2
i

is equivalent to the MAP estimate for w with the factorized Gaussian
likelihood yi ∼ N (wTφ(xi), σ

2) and a certain prior for w.
The Posterior is given by :

p(w|X, y) =
p(y|X,w)p(w)

p(y)

=⇒ p(w|X, y) ∝ p(y|X,w)p(w)

=⇒ log p(w|X, y) ∝ log p(y|X,w) + log p(w)

We are placing a prior distribution p(w) on the parameters.
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• Gaussian parameter prior p(w) = N (0, α2I)

• Log-posterior distribution:

log p(w|X, y) = − 1

2σ2

N∑
i=1

(
yi − wTφ(xi)

)2 − 1

2α2

M∑
i=1

w2
i

= − 1

2σ2

 N∑
i=1

(
yi − wTφ(xi)

)2
+

σ2

α2︸︷︷︸
λ

M∑
i=1

w2
i



= − 1

2σ2

(
N∑
i=1

(
yi − wTφ(xi)

)2
+ λ

M∑
i=1

w2
i

)
︸ ︷︷ ︸

L(w)

= − 1

2σ2
L(w)

Explain also the intuition behind this loss function.
The first part of the expression of L is obtain by the maximum likelihood
estimator and as this method is weak to the over-fitting problem , so our
data here has a high variance and low bias. The intuition behind in order to
overcome this problem, we will Mitigate the effect of over-fitting by placing
a prior distribution on the parameters that is the reason where the second
term of L appear and the reason for that is to Penalize extreme values that
are implausible under that prior.

b)

Find the regularized least squares value for w using 20 Gaussian basis func-
tions of scale 0.1 with means equally spaced in [0, 1] and plot the regression
function for test points between -0.3 and 1.3 for three values of λ of your
choosing. Your chosen values of λ should illustrate under-fitting, over-fitting
and somewhere more satisfactory in between. Make sure you label which is
which, together with the values of λ that you used.
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c)

Given :

E =
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − ytruei

)2
Where ytruei = 1

D

∑D
d=1 y

d
i

1)

Show that we can write E as :

E =
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
+

1

N

N∑
i=1

(
yavgi − ytruei

)2
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we have :

E =
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − ytruei

)2

=
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i + yavgi − ytruei

)2

=
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
+

1

D

D∑
d=1

1

N

N∑
i=1

(
yavgi − ytruei

)2
+ 2

1

D

D∑
d=1

1

N

N∑
i=1

(
yavgi − ytruei

) (
ydi − y

avg
i

)
︸ ︷︷ ︸

0

=
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
+

1

N

N∑
i=1

1

D

D∑
d=1

(
yavgi − ytruei

)2
=

1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
+

1

N

N∑
i=1

1

D
D
(
yavgi − ytruei

)2

E =
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
+

1

N

N∑
i=1

(
yavgi − ytruei

)2
So we have got :

E =
1

D

D∑
d=1

1

N

N∑
i=1

(
ydi − y

avg
i

)2
︸ ︷︷ ︸

bias

+
1

N

N∑
i=1

(
yavgi − ytruei

)2
︸ ︷︷ ︸

variance

From this equation , we can see that :

The average squared error = variance + bias

So :
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• When the Variance increase, the bias decrease because The average
squared error is a positive value.

• When the Variance decrease, the bias increase.

This relation can be see as the bias-variance Trade-off

3 Bayesian Linear Regression

a)

Write a python function that lml(alpha, beta, Phi, Y) that returns the log
marginal likelihood, and also a function grad ml(alpha, beta, Phi, Y) that re-
turns the gradient of the marginal likelihood with respect to the vector α, β.
The function should return a numpy vector with the gradient with respect
to α in the first component and gradient with respect to β in the second.

Our model is on the form : y = φ(x)w + ε where ε ∼ N (0, βI) and the
posterior is given by :

p(w|y, x, α, β) =
p(y|w, α, β, x)p(w)

p(y|x)

Where The marginal likelihood is given by:

p(y|x, α, β) =

∫
p(y, w|x, α, β)dw =

∫
p(y|w, x, α, β)p(w)dw

We have :

p(y|w, x, α, β) =
N∏
i=1

N (yi|wTφi)

p(w) = N (w|0, αI)

So :

p(y|x, α, β) =

∫
N (y|φw)N (w|0, αI)dw

This expression doesn’t depend on w.
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We will now compute it mean and covariance.
Ew(y|X) = Ew(φ(x)w + ε) = φ(x)Ew(w) = 0

Covw(y) = Covw(φ(x)w + ε) = φ(αI)φT + βI

So the marginal likelihood is given by :

p(y|x, α, β) = (2π)−
N
2 |αφφT + βI|−

1
2 exp

(
−1

2
yT (αφφT + βI)−1y

)
The Log-Marginal likelihood is given by :

log p(y|x, α, β) = −N
2
log2π − 1

2
log|αφφT + βI| − 1

2
yT (αφφT + βI)−1y

Now , we will compute the gradient of the Log-Marginal likelihood with
respect to α and β.

Let A(α, β) = αφφT + βI, We can show that :

∂

∂α
detA(α, β) = detA(α, β) trace

(
A−1(α, β)

∂

∂α
A(α, β)

)
∂

∂α
A−1(α, β) = −A−1(α, β)

∂

∂α
A(α, β)A−1(α, β)

So we can conclude that:

∂

∂α
log p(y|x, α, β) = −1

2
trace

[
A−1(α, β)φφT

]
+

1

2
yTA−1(α, β)φφTA−1(α, β)y

∂

∂β
log p(y|x, α, β) = −1

2
trace

[
A−1(α, β)

]
+

1

2
yTA−1(α, β)A−1(α, β)y

b)

For the given data set and the linear basis functions (i.e. polynomial of or-
der 1), maximize the log marginal likelihood with respect to α and β using
gradient descent. Show your steps on a contour plot.
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For this experience, we found:
αmax = 0.4245549972256691 and βmax = 0.4492313296405098

with the following parameters :

• learning rate = 0.01

• Size of the data set : N = 25

• The Data set : X = np.linspace(0,0.9,N).reshape(N,1)

• Y = f(X)

• We randomly initialize α and β

• We set-up the number of iteration : epoch = 1000

We obtain the following contour plot showing the convergence of to the
maximum point (αmax, βmax) :
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c)

In the case of trigonometric basis function, compute the maximum of the log
marginal likelihood for orders 0 to 11 inclusive using gradient descent (make
sure you choose good starting values and a small step size with plenty of iter-
ations). Plot these values on a graph against the order of the basis functions.
Compare your answer to your cross validation graph from Question 1c) and
describe briefly the merits of the two approaches.

From Question 1c) we can see that a good choose of the degree of the
polynomial is 4 and in fact it ’is confirmed in this graph we can see that the
maximum value of the log marginal likelihood for orders 0 to 11 is reach for
the degree of the polynomial equal to 4, But this method is more accurate
because we are using here the gradient descent method, hence we are sure
about the convergence or the maximum of the log marginal likelihood.

d)
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